Setting the Stage: Water Quality Planning and Restoration Goals **Barry Tonning** Tetra Tech # We know what nonpoint source pollution is, and why it's important . . . - Rainfall, snowmelt, or irrigation runs over land or through the ground, picks up pollutants, and deposits them into rivers, lakes, or the ocean or introduces them into ground water. - NPS pollution is responsible for more than half of the nation's remaining water quality problems. - The cumulative impact from many nonpoint sources degrades water quality. #### Other water quality measures: pH very alkaline • Measure of hydrogen ion household lye bleach concentration ammonia • Typically 6.5 s.u. to 9.0 s.u. needed for most biota egg whites-swimming pool watersea water • Determines the solubility distilled water and bioavailability of egg yolks pure rain various chemicals beer orange juice pickle processing-· Useful for detecting acid vinegar mine drainage, poor lemon juice wastewater treatment battery acid very acid | STI | REAM NAME | | LOCATION | | | | | | |--|---|---|---|---|--|--|--|--| | ST | ATION#I | RIVERMILE | STREAM CLASS | | | | | | | LA | г | .ONG | RIVER BASIN | | | | | | | ST | ORET# | | AGENCY | | | | | | | INV | ESTIGATORS | | | | | | | | | FORM COMPLETED BY | | DATE AM | REASON FOR SUR | VEY | | | | | | | Habitat | Γ | Condition | Category | | | | | | each | Parameter | Optimal | Suboptimal | Marginal | Poor | | | | | | 1. Epifaunal
Substrate/
Available Cover | Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | 30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | 10-30% mix of stable
habitat; habitat
availability less than
desirable; substrate
frequently disturbed or
removed. | Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking. | | | | | | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | 5 | 2. Pool Substrate
Characterization | Mixture of substrate
materials, with gravel and
firm sand prevalent; root
mats and submerged | Mixture of soft sand, mud,
or clay; mud may be
dominant; some root mats
and submerged vegetation | All mud or clay or sand
bottom; little or no root
mat; no submerged
vegetation. | Hard-pan clay or bedrock;
no root mat or vegetation. | | | | | d in sampling re | | vegetation common. | present. | | | | | | | uated in sampling re | SCORE | | present.
15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | neters to be evaluated in sampling reach | | vegetation common. | | 10 9 8 7 6 Shallow pools much more prevalent than deep pools. | 5 4 3 2 1 0
Majority of pools small-
shallow or pools absent. | | | | | 8. Bank Stability
(score each bank) | Banks stable; e
erosion or bank
absent or minin
potential for fu
problems. <5%
affected. | failu
nal; lit
ture | re
tle | Moderate
infrequen
erosion m
over. 5-3
reach has | it, small
nostly he
10% of l | areas of
ealed
oank in | Moderate
60% of b
areas of e
erosion p
floods. | oank in re
erosion; | each has
high | Unstable
areas; "ra
frequent
sections obvious
60-100%
erosional | aw" area
along st
and bend
bank slo
of bank | s
raight
ls;
ughing; | |--|--|--|---|--|---|--|--|---|--|--|--|--| | SCORE (LB) | Left Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SCORE (RB) | Right Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 9. Vegetative
Protection (score
each bank)
Note: determine left
or right side by
facing downstream. | More than 90%
streambank sur
immediate ripa
covered by nati
vegetation, incl
trees, understor
or nonwoody
macrophytes; v
disruption throu
or mowing min
evident; almost
allowed to grov | faces :
rian zo
ve
uding
y shru
egetat
ugh gr
imal o
: all pl: | and
one
bs,
ive
azing
or not
ants | | covered
n, but on
is not wed; dism
ut not as
growth
eat extent
plant st | ell- uption ffecting potential ut; more he ubble | 50-70%
surfaces
vegetatio
obvious;
soil or cl
vegetatio
than one
potential
height re | covered
on; disrup
patches
osely cro
on comm
half of t
plant st | of bare
of bare
opped
on; less
he
ubble | Less than
streamba
covered i
disruptio
vegetatio
removed
5 centim
average : | mk surfa
by veget
n of stre
on is very
on has be
to
eters or l | ices
ation;
ambank
y high;
een | | SCORE (LB) | Left Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SCORE (RB) | Right Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | 10. Riparian
Vegetative Zone
Width (score each
bank riparian zone) | Width of riparis >18 meters; hu activities (i.e., j lots, roadbeds, lawns, or crops impacted zone. | man
parkin
clear-c
) have | g
cuts, | Width of
18 meters
activities
zone only | s; huma
have in | pacted | Width of
12 meter
activities
zone a gr | s; huma
have in | n
ipacted | meters: 1 | ittle or n
vegetatio | on due to | | SCORE (LB) | Left Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | SCORE (RB) | Right Bank | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | # Water Quality Standards - WQSs establish formal (legal) approaches for protecting water quality - Key elements: - Designated <u>uses</u> what beneficial uses apply? - Water quality <u>criteria</u> based on designated uses - Antidegradation keep clean waters clean! # **WQS**: Process - WQS established by states and tribes - EPA must review/approve prior to becoming effective - If EPA disapproves a state or tribe WQS and state or tribe doesn't revise it, EPA promulgates a WQS - Public review and comment at state, tribal, and federal levels (if EPA promulgates) - States and tribes must review their WQS every three years and submit them to EPA #### Indian Tribes and WQS/CWA - Section 518 of the CWA: Under specific circumstances EPA is to "treat tribes as states" with regard to CWA programs, including: - Water quality standards - Water quality monitoring and reporting - TMDLs - NPDES - Various CWA grant programs # WQS: Designating Waterbody Uses #### The General Rules - Must designate all "existing" uses - Fishable/swimmable required, with rare exceptions - "Waste transport" not OK - Multiple uses OK; "most sensitive use reigns" - Can consider economic factors - Must not preclude attainment of downstream WQS ## WQS: Designated Use Categories - Drinking Water - Treated/Untreated - Human Contact - Noncontact/Secondary/Primary (continuous) - Fish, shellfish consumption - Aquatic life - Warmwater species/habitat - Coldwater species/habitat - Agriculture Water Supply - Industrial Water Supply - Cultural/Ceremonial Uses ### WQS: WQ Criteria (WQC) - Consistent <u>scientifically</u> with protecting all designated uses (DUs) - · Basic types of criteria - Narrative/numeric - Water column/sediment/fish tissue - Criteria can apply to: - Aquatic life - Pollutant-specific/aquatic community indices - Human health (drinking & fish consumption) - Wildlife (semiaquatic/food chain effects) Physical, chemical, and biological factors are most often addressed by numeric or narrative water quality criteria Figure 6: Monitoring Types and Pollutants or Conditions That They Measure Biological **Physical** Chemical Assesses: Measures: Tests for levels of: · Structure and function of Pesticides Temperature aquatic communities Organics Conductivity Metals (cadmium, Habitat, such as condition Transparency of riparian vegetation Total suspended arsenic, etc.) Nutrients Health and abundance solids of aquatic species or (phosphorous, fish populations nitrogen) Toxic materials in fish tissue #### **WQS: Narrative Criteria** - Waters must be "free from" - Oil, scum, and floating debris in amounts that are unsightly - Putrescent or otherwise objectionable bottom deposits - Nuisance levels of odor, color, or other conditions - Undesirable or nuisance aquatic life - Substances in amounts toxic to humans or aquatic life Usually apply to all waters, regardless of use designation #### **WQS: Numeric Criteria** - Parameter-specific: DO, temp., turbidity, N, P, Cu, dioxin, etc. - -Level/concentration: 1 mg/L, 5 mg/kg - -Duration: - Acute: instantaneous, 1-hour, 1-day - Chronic: 4-day, 7-day, 30-day - -Recurrence interval: 1 year, 3 years # WQS: Criteria for primary contact #### G. CEREMONIAL USE - PRIMARY HUMAN CONTACT Monthly geometric mean of fecal coliform bacteria ≤ 200 colonies/100 mL. No individual sample may have more than 400 colonies/100 mL. Monthly geometric mean for E. coli bacteria ≤ 126 colonies/100 mL No individual sample may have more than 235 colonies/100 mL 6.6 < pH < 9.0 # WQC: Aquatic Life Support #### FISHERIES | Parameter | Cold Water Fishery | High Quality
Cold Water Fishery | | | | |----------------------------|---------------------|--|--|--|--| | Dissolved O ₂ | ≥ 6.0 mg/L | ≥ 6.0 mg/L | | | | | Temperature | ≤ 20°C (68° F) | ≤ 20°C (68° F) | | | | | pН | between 6.6 and 8.8 | between 6.6 and 8.8 | | | | | Turbidity | | 10 NTU | | | | | Conductivity
(at 25° C) | 1 | 300 µmhos/cm (unless natural background is higher) | | | | | Chlorine | 3 μg/L | 2 μg/L | | | | # **WQS: Antidegradation** - No activities approved that cause violation of minimum WQ criteria (Tier 1) - If water is "cleaner" than WQ criteria, can't degrade UNLESS important social/ economic benefits are shown; must do an alternatives analysis (Tier 2) - Outstanding national resource waters cannot be degraded (Tier 3)